Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.611
Filtrar
1.
BMC Plant Biol ; 24(1): 108, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347449

RESUMO

Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.


Assuntos
Brassica napus , Metais Pesados , Poluentes do Solo , Antioxidantes/metabolismo , alfa-Tocoferol/farmacologia , alfa-Tocoferol/metabolismo , Brassica napus/metabolismo , Cloreto de Mercúrio/toxicidade , Cloreto de Mercúrio/metabolismo , Tocoferóis/metabolismo , Tocoferóis/farmacologia , Metais Pesados/metabolismo , Prolina/metabolismo , Poluentes do Solo/metabolismo
2.
J Nanobiotechnology ; 22(1): 50, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317220

RESUMO

Obesity is a major risk to human health. Adipogenesis is blocked by α-tocopherol and conjugated linoleic acid (CLA). However, their effect at preventing obesity is uncertain. The effectiveness of the bioactive agents is associated with their delivery method. Herein, we designed CLA-loaded tocol nanostructured lipid carriers (NLCs) for enhancing the anti-adipogenic activity of α-tocopherol and CLA. Adipogenesis inhibition by the nanocarriers was examined using an in vitro adipocyte model and an in vivo rat model fed a high fat diet (HFD). The targeting of the tocol NLCs into adipocytes and adipose tissues were also investigated. A synergistic anti-adipogenesis effect was observed for the combination of free α-tocopherol and CLA. Nanoparticles with different amounts of solid lipid were developed with an average size of 121‒151 nm. The NLCs with the smallest size (121 nm) showed greater adipocyte internalization and differentiation prevention than the larger size. The small-sized NLCs promoted CLA delivery into adipocytes by 5.5-fold as compared to free control. The nanocarriers reduced fat accumulation in adipocytes by counteracting the expression of the adipogenic transcription factors peroxisome proliferator activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)α, and lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). Localized administration of CLA-loaded tocol NLCs significantly reduced body weight, total cholesterol, and liver damage indicators in obese rats. The biodistribution study demonstrated that the nanoparticles mainly accumulated in liver and adipose tissues. The NLCs decreased adipocyte hypertrophy and cytokine overexpression in the groin and epididymis to a greater degree than the combination of free α-tocopherol and CLA. In conclusion, the lipid-based nanocarriers were verified to inhibit adipogenesis in an efficient and safe way.


Assuntos
Adipogenia , Ácidos Linoleicos Conjugados , Tocoferóis , Masculino , Humanos , Ratos , Animais , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Distribuição Tecidual , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo
3.
Blood Cells Mol Dis ; 106: 102827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301450

RESUMO

JM-20 is a 1,5-benzodiazepine compound fused to a dihydropyridine fraction with different pharmacological properties. However, its potential toxic effects on blood cells have not yet been reported. Thus, the present study aimed to investigate, for the first time, the possible cytotoxicity of JM-20 through cell viability, cell cycle, morphology changes, reactive species (RS) to DCFH-DA, and lipid peroxidation in human leukocytes, its hemolytic effect on human erythrocytes, and its potential DNA genotoxicity using plasmid DNA in vitro. Furthermore, the compound's ability to reduce the DPPH radical was also measured. Human blood was obtained from healthy volunteers (30 ± 10 years old), and the leukocytes or erythrocytes were immediately isolated and treated with different concentrations of JM-20. A cytoprotective effect was exhibited by 10 µM JM-20 against 1 mM tert-butyl hydroperoxide (t-but-OOH) in the leukocytes. However, the highest tested concentrations of the compound (20 and 50 µM) changed the morphology and caused a significant decrease in the cell viability of leukocytes (p < 0.05, in comparison with Control). All tested concentrations of JM-20 also resulted in a significant increase in intracellular RS as measured by DCFH-DA in these cells (p < 0.05, in comparison with Control). On the other hand, the results point out a potent antioxidant effect of JM-20, which was similar to the classical antioxidant α-tocopherol. The IC50 value of JM-20 against the lipid peroxidation induced by (FeII) was 1.051 µM ± 0.21, while the IC50 value of α-tocopherol in this parameter was 1.065 µM ± 0.34. Additionally, 50 and 100 µM JM-20 reduced the DPPH radical in a statistically similar way to the 100 µM α-tocopherol (p < 0.05, in comparison with the control). No significant hemolysis in erythrocytes, no cell cycle changes in leukocytes, and no genotoxic effects in plasmid DNA were induced by JM-20 at any tested concentration. The in silico pharmacokinetic and toxicological properties of JM-20, derivatives, and nifedipine were also studied. Here, our findings demonstrate that JM-20 and its putative metabolites exhibit similar characteristics to nifedipine, and the in vitro and in silico data support the low toxicity of JM-20 to mammals.


Assuntos
Antioxidantes , Fluoresceínas , alfa-Tocoferol , Animais , Humanos , Adulto Jovem , Adulto , Antioxidantes/farmacologia , Antioxidantes/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Nifedipino/metabolismo , Nifedipino/farmacologia , Eritrócitos/metabolismo , DNA , Estresse Oxidativo , Mamíferos/metabolismo
4.
Free Radic Biol Med ; 215: 106-111, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401827

RESUMO

The recent publication by Azzi and colleagues puts forth the argument that only RRR-α-tocopherol should be considered as vitamin E from a physiological point of view. They base their argument primarily on the assertion that only this form has been used to treat stark vitamin E deficiency in humans (known as AVED, or Ataxia with Vitamin E Deficiency). Azzi et al. also argue that other chemically similar molecules, such as tocopherols other than α-tocopherol and tocotrienols do not provide vitamin E activity. Azzi and colleagues are correct on this second point. An investigation into the biological activities of vitamin E, and the mechanisms behind these activities, confirms that physiological vitamin E activity is limited to certain α-tocopherol forms. However, it is also clear that these activities are not restricted only to the RRR-form but include other 2R-forms as well. Indeed, the α-tocopherol transfer protein (α-TTP), which is critical to mediate vitamin E trafficking and biological activity, and genetic defects of which lead to vitamin E deficiency, binds well to all 2R-forms of α-tocopherol. Furthermore, both RRR-α-tocopherol and the other 2R-forms are maintained in human plasma and distributed to tissues and organs, whereas the 2S-stereoisomers are excreted quickly. As such, in recent years the definition of vitamin E including both 2R- and RRR-α-tocopherol has gained both broad scientific and regulatory acceptance. Consistent with this understanding, we provide evidence that AVED has indeed been treated successfully with forms in addition to RRR-α-tocopherol, again arguing against the restriction of the definition to RRR-α-tocopherol only. Finally, we provide evidence against any safety concerns utilizing the currently accepted definition of vitamin E.


Assuntos
Deficiência de Vitamina E , Vitamina E , Humanos , Vitamina E/farmacologia , Vitamina E/metabolismo , alfa-Tocoferol/farmacologia , Estereoisomerismo , Antioxidantes/farmacologia , Antioxidantes/química , Deficiência de Vitamina E/tratamento farmacológico
5.
Free Radic Res ; 58(2): 88-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330142

RESUMO

The aim of this study is to investigate the modulating effect of coexisting food components on the absorption and metabolism of quercetin and blood plasma antioxidant potentials. The combination of quercetin with α-tocopherol (αT), cellulose, or a commercially available vegetable beverage containing αT and dietary fiber was orally administered to mice. Compared to the single administration of quercetin aglycone, the coadministration of αT with quercetin significantly increased the plasma quercetin concentration at 0.5 h, whereas the combination of quercetin and cellulose decreased it. Interestingly, the administration of quercetin mixed with the vegetable beverage showed no significant change in the quercetin concentration in the mice plasma. The treatment of the cells with the blood plasma after the coadministration of αT with quercetin significantly upregulated the gene expression of the antioxidant enzyme (heme oxygenase-1), whereas the quercetin and cellulose combination did not. In the plasma of the quercetin-administered mice, eight types of quercetin metabolites were detected, and their quantities were affected by the combination with αT. The potentials of the heme oxygenase-1 gene expression by these metabolites were very limited, although several metabolites showed radical scavenging activities comparable to aglycone in the in vitro assays. These results suggested that the combination of αT potentiates the quercetin absorption and metabolism and thus the plasma antioxidant potentials, at least in part, by the quantitative changes in the quercetin metabolites.


Assuntos
Antioxidantes , alfa-Tocoferol , Camundongos , Animais , alfa-Tocoferol/farmacologia , Antioxidantes/metabolismo , Quercetina/farmacologia , Heme Oxigenase-1 , Celulose
6.
Arch Toxicol ; 98(4): 1043-1059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38289529

RESUMO

Levels and chemical species of reactive oxygen/nitrogen species (ROS/RNS) determine oxidative eustress and distress. Abundance of uptake pathways and high oxygen consumption for ATP-dependent transport makes the renal proximal tubule particularly susceptible to cadmium (Cd2+)-induced oxidative stress by targeting ROS/RNS generation or antioxidant defence mechanisms, such as superoxide dismutase (SOD) or H2O2-metabolizing catalase (CAT). Though ROS/RNS are well-evidenced, the role of distinct ROS profiles in Cd2+ concentration-dependent toxicity is not clear. In renal cells, Cd2+ (10-50 µM) oxidized dihydrorhodamine 123, reaching a maximum at 2-3 h. Increases (up to fourfold) in lipid peroxidation by TBARS assay and H2O2 by Amplex Red were evident within 30 min. ROS and loss in cell viability by MTT assay with 50 µM Cd2+ could not be fully reversed by SOD mimetics Tempol and MnTBAP nor by SOD1 overexpression, whereas CAT expression and α-tocopherol were effective. SOD and CAT activities were attenuated below controls only with >6 h 50 µM Cd2+, yet augmented by up to 1.5- and 1.2-fold, respectively, by 10 µM Cd2+. Moreover, 10 µM, but not 25-50 µM Cd2+, caused 1.7-fold increase in superoxide anion (O2•-), detected by dihydroethidium, paralled by loss in cell viability, that was abolished by Tempol, MnTBAP, α-tocopherol and SOD1 or CAT overexpression. H2O2-generating NADPH oxidase 4 (NOX4) was attenuated by ~50% with 10 µM Cd2+ at 3 h compared to upregulation by 50 µM Cd2+ (~1.4-fold, 30 min), which was sustained for 24 h. In summary, O2•- predominates with low-moderate Cd2+, driving an adaptive response, whereas oxidative stress by elevated H2O2 at high Cd2+ triggers cell death signaling pathways.Highlights Different levels of reactive oxygen species are generated, depending on cadmium concentration. Superoxide anion predominates and H2O2 is suppressed with low cadmium representing oxidative eustress. High cadmium fosters H2O2 by inhibiting catalase and increasing NOX4 leading to oxidative distress. Superoxide dismutase mimetics and overexpression were less effective with high versus low cadmium. Oxidative stress profile could dictate downstream signalling pathways.


Assuntos
Cádmio , Óxidos N-Cíclicos , Metaloporfirinas , Marcadores de Spin , Superóxidos , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Cádmio/toxicidade , Catalase/metabolismo , Catalase/farmacologia , Superóxidos/metabolismo , Peróxido de Hidrogênio/metabolismo , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase-1/farmacologia , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Rim , Superóxido Dismutase/metabolismo , Linhagem Celular
7.
Cryobiology ; 114: 104851, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237749

RESUMO

Sperm quality is preserved through the crucial involvement of antioxidants, which play a vital role in minimizing the occurrence of reactive oxygen species (ROS) during the cryopreservation process. The suitability of the type and concentration of antioxidants are species-dependent, and this study is crucial in order to improve the quality of the climbing perch sperm post-cryopreservation. Therefore, this study aimed to determine the best type and concentration of antioxidants for cryopreservation of climbing perch Anabas testudineus sperm. To achieve this, 6 types of antioxidants, namely, ascorbic acid, beta-carotene, glutathione, butylated hydroxytoluene (BHT), myo-inositol, and alpha-tocopherol, with inclusion of a control were tested in 3 replications at three concentration levels of 0 mg/L (control), 20 mg/L, 40 mg/L, and 60 mg/L. Sperm was diluted in a glucose-base extender at a ratio of 1:60 (sperm: glucose base), then 10 % DMSO and 5 % egg yolk was added before cryopreservation for two weeks. The results showed that the type and concentration of antioxidants had a significant effect on the motility and viability of cryopreserved climbing perch sperm (P < 0.05), where the best results for ascorbic acid, beta-carotene, glutathione, myo-inositol, and alpha-tocopherol were obtained at a concentration of 60 mg/L, while BHT was at a concentration of 20 mg/L. The best results for glutathione, myo-inositol, and alpha-tocopherol were significantly different from other treatments, while the best results for ascorbic acid and beta-carotene (60 mg/L) were not significantly different from the 40 mg/L concentration, while the best results for BHT were not significantly different from the control treatments. Therefore, the best concentration of glutathione, myo-inositol, and alpha-tocopherol was 60 mg/L, while for ascorbic acid and beta-carotene it was 40 mg/L, and BHT was not recommended. DNA integrity analysis indicated the absence of fragmentation in all samples, including fresh, control, and treated sperm. Based on practical and economic considerations, myo-inositol at 60 mg/L was recommended for cryopreservation of climbing perch A. testudineus sperm.


Assuntos
Percas , Preservação do Sêmen , Animais , Masculino , Antioxidantes/farmacologia , Motilidade dos Espermatozoides , alfa-Tocoferol/farmacologia , beta Caroteno/farmacologia , Criopreservação/métodos , Sêmen , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides , Ácido Ascórbico/farmacologia , Glutationa/farmacologia , DNA , Glucose/farmacologia , Inositol/farmacologia
8.
Food Funct ; 15(2): 992-1003, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38179649

RESUMO

Minor constituents exhibit certain antioxidant interactions in vitro, and the effects in different media are different. However, it is not clear whether there are antioxidant interactions in cells after digestion and absorption. We utilized the cellular antioxidant evaluation model in HepG2 cells to study the antioxidant interaction between α-tocopherol and γ-oryzanol, and the interaction mechanism of a binary mixture was also illustrated. A cellular antioxidant assay (CAA) model and a combined index (CI) method were firstly used to explore the antioxidant activity and interaction of the binary mixture in HepG2 cells. The CAA value was positively correlated with the single addition concentration, while the results displayed a biphasic tendency with increasing concentrations of the binary mixture. The combination of TO11 (1 µg mL-1 α-tocopherol and 10 µg mL-1 γ-oryzanol) showed the greatest antioxidant activity and synergistic effect, and the maximum CAA value reached up to 94.84 ± 4.2. Then the mechanism of the synergistic antioxidant effect of the binary mixture was explained from three aspects including cellular uptake, intracellular reactive oxygen species (ROS) level and endogenous enzyme activity. The results demonstrated that the antioxidant interaction of the binary mixture in cells was related to cellular uptake of minor constituents, and the combination of TO11 exerted a synergistic effect by scavenging ROS and up-regulating glutathione peroxidase (GSH-Px) activity, resulting in the strongest cellular antioxidant activity. This study throws light on the nature of antioxidant interaction between minor constituents, which may contribute to the development of related functional foods and rational dietary collocation.


Assuntos
Antioxidantes , Fenilpropionatos , alfa-Tocoferol , Humanos , Antioxidantes/farmacologia , alfa-Tocoferol/farmacologia , Espécies Reativas de Oxigênio , Células Hep G2
9.
Int J Biol Macromol ; 260(Pt 2): 129535, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244747

RESUMO

Microbeads are used in personal care and cosmetic products (PCCPs) but are produced from nondegradable materials. Biodegradable polyhydroxybutyrate (PHB) has been recognized as a promising alternative material for use in PCCPs; however, utilizing PHB to encapsulate PCCPs is challenging because PCCPs need to be protected from the environment but their release needs to be permitted under specific physiological conditions. The aim of this work was to develop and evaluate pH-responsive cellulose acetate phthalate (CAP) to formulate lipophilic α-tocopherol acetate (α-TA)-loaded pH-responsive PHB/CAP microbeads. The influences of the PHB/CAP ratio and initial α-TA loading on the microbead size, surface morphology, encapsulation efficiency (%EE), loading capacity (%LC), and α-TA release profile were studied. The microbeads exhibited a spherical shape with a size of 328.7 ± 2.9 µm. The EE and LC were 86.7 ± 2.6 % and 13.5 ± 0.4 %, respectively. The release profile exhibited pH-responsive characteristics. These α-TA-loaded pH-responsive microbeads were stable with >50 % of the α-TA remaining after 90 days at 4, 25 and 45 °C in the dark. The results from the cytotoxicity assay with PSVK1 cells demonstrated that the microbeads were nontoxic. Hence, our developed formulation has the potential to be used to encapsulate oil-based drugs to formulate lipophilic substance-loaded pH-responsive microbeads.


Assuntos
Celulose/análogos & derivados , Poli-Hidroxibutiratos , alfa-Tocoferol , alfa-Tocoferol/farmacologia , Microesferas , Concentração de Íons de Hidrogênio
10.
J Basic Clin Physiol Pharmacol ; 35(1-2): 7-14, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38234261

RESUMO

Liver diseases are complex conditions, significantly influenced by oxidative stress. This comprehensive review assesses the therapeutic role of antioxidants like l-ascorbic acid and α tocopherol, beta-carotene, various minerals, and plant-based ingredients in mitigating oxidative stress-induced liver diseases. The manuscript delves into the critical influence of genetic and epigenetic factors on disease susceptibility, progression, and response to antioxidant therapy. While animal studies suggest antioxidant efficacy in liver disease treatment, human trials remain inconclusive, and caution is advised due to its possible potential pro-oxidant effects. Moreover, the interactions of antioxidants with other drugs necessitate careful consideration in the management of polypharmacy in liver disease patients. The review underscores the need for further research to establish the clinical benefits of antioxidants with understanding of possible antioxidant toxicities to elucidate the intricate interplay of genetic, epigenetic, and environmental factors in liver diseases. The aim is to foster a better understanding of the knowledge on hepatic disease management with judicial antioxidant therapies.


Assuntos
Antioxidantes , Hepatopatias , Animais , Humanos , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Estresse Oxidativo , alfa-Tocoferol/farmacologia , Hepatopatias/tratamento farmacológico
11.
Food Funct ; 15(1): 183-195, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38019686

RESUMO

Anticancer effects of vitamin E (tocopherols) have been studied extensively. While in vitro and animal studies showed promising results regarding anticancer effects of tocopherols, human intervention studies failed to reproduce these results. In vivo, α-tocopherol (α-TOH) is metabolized to the long-chain metabolites (LCM) 13'-hydroxychromanol (α-13'-OH) and 13'-carboxychromanol (α-13'-COOH), which likely reach the large intestine. The LCM showed antiproliferative effects in different colon cancer cell lines, but the exact mechanism of action remains unclear. To further clarify the chemopreventive action of the LCM, premalignant LT97 colon adenoma cells were treated with α-TOH, α-13'-OH and α-13'-COOH to study their impact on growth, apoptosis, antigenotoxicity, and ROS-scavenging capacity as well as expression of selected genes involved in detoxification and the cell cycle. Growth inhibitory potential was observed for α-13'-OH (IC50: 37.4 µM) and α-13'-COOH (IC50: 5.8 µM) but not for α-TOH in the tested concentrations. Levels of caspase-3 activity and expression of genes regulating the cell cycle and detoxification remained unchanged. However, α-TOH, α-13'-OH and α-13'-COOH exhibited antigenotoxic and partly ROS-scavenging capacity. The results indicate that the LCM exert chemopreventive effects via ROS-scavenging capacity, the protection against DNA damage and the induction of cell death via caspase-independent mechanisms in premalignant colon cells.


Assuntos
Adenoma , Neoplasias do Colo , Animais , Humanos , alfa-Tocoferol/farmacologia , alfa-Tocoferol/metabolismo , Espécies Reativas de Oxigênio , Tocoferóis , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/prevenção & controle , Adenoma/tratamento farmacológico , Adenoma/prevenção & controle
12.
Int J Pharm ; 649: 123599, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37992978

RESUMO

Gemcitabine (GEM) is an important chemotherapeutic agent used alone or in combination with other anticancer agents for the treatment of various solid tumors. In this study, the potential of a dietary supplement, α-tocopherol succinate (TOS) was investigated in combination with GEM by utilizing human serum albumin-based nanoparticles (HSA NPs). The developed nanoparticles were characterized using DLS, SEM and FTIR and evaluated in a panel of cell lines to inspect cytotoxic efficacy. The ratio metric selected combination of the NPs was further investigated in human pancreatic cancer cell line (MIA PaCa-2 cells) to assess the cellular death mechanism via a myriad of biochemical and bio-analytical assays including nuclear morphometric analysis by DAPI staining, ROS generation, MMP loss, intracellular calcium release, in vitro clonogenic assay, cell migration assay, cell cycle analysis, immunocytochemical staining followed by western blotting, Annexin V-FITC and cellular uptake studies. The desolvation-crosslinking method was used to prepare the NPs. The average size of TOS-HSA NPs and GEM-HSA NPs was found to be 189.47 ± 5 nm and 143.42 ± 7.4 nm, respectively. In combination, the developed nanoparticles exhibited synergism by enhancing cytotoxicity in a fixed molar ratio. The selected combination also significantly triggered ROS generation and mitochondrial destabilization, alleviated cell migration potential and clonogenic cell survival in MIA PaCa-2 cells. Further, cell cycle analysis, Annexin-V FITC assay and caspase-3 activation, up regulation of Bax and down regulation of Bcl-2 protein confirmed the occurrence of apoptotic event coupled with the G0/G1 phase arrest. Nanocarriers based this combination also offered approximately 14-folds dose reduction of GEM. Overall, the combined administration of TOS-HSA NPs and GEM-HSA NPs showed synergistic cytotoxicity accompanied with dose reduction of the gemcitabine. These encouraging findings could have implication in designing micronutrient based-combination therapy with gemcitabine and demands further investigation.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Gencitabina , alfa-Tocoferol/farmacologia , Desoxicitidina/química , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Apoptose
13.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1715-1725, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37721555

RESUMO

RATIONALE: Indomethacin (INDO) is a widely utilized non-steroidal anti-inflammatory drug (NSAID) with recognized effect on the central nervous system. Although previous reports demonstrate that prolonged treatment with indomethacin can lead to behavioral alterations such as anxiety disorder, the biochemical effect exerted by this drug on the brain are not fully understood. OBJECTIVES: The aim of present study was to evaluate if anxiety-like behavior elicited by indomethacin is mediated by brains oxidative stress as well as if alpha-tocopherol, a potent antioxidant, is able to prevent the behavioral and biochemical alterations induced by indomethacin treatment. METHODS: Zebrafish were utilized as experimental model and subdivided into control, INDO 1 mg/Kg, INDO 2 mg/Kg, INDO 3 g/Kg, α-TP 2 mg/Kg, α-TP 2 mg/Kg + INDO 1 mg/Kg and α-TP + INDO 2 mg/Kg groups. Vertical distributions elicited by novelty and brain oxidative stress were utilized to determinate behavioral and biochemical alterations elicited by indomethacin treatment, respectively. RESULTS: Our results showed that treatment with indomethacin 3 mg/kg induces animal death. No changes in animal survival were observed in animals treated with lower doses of indomethacin. Indomethacin induced significant anxiogenic-like behavior as well as intense oxidative stress in zebrafish brain. Treatment with alpha-tocopherol was able to prevent anxiety-like behavior and brain oxidative stress induced by indomethacin. CONCLUSIONS: Data presented in current study demonstrated for the first time that indomethacin induces anxiety-like behavior mediated by brain oxidative stress in zebrafish as well as that pre-treatment with alpha-tocopherol is able to prevent these collateral effects.


Assuntos
Indometacina , Peixe-Zebra , Animais , Indometacina/toxicidade , alfa-Tocoferol/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Estresse Oxidativo , Encéfalo , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/prevenção & controle
14.
Eur J Oral Sci ; 132(1): e12965, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115770

RESUMO

This study evaluated the effect of different concentrations of alpha-tocopherol in gel form on fracture strength, hybrid layer formation, and microtensile bond strength of endodontically treated teeth bleached with 40% hydrogen peroxide (H2 O2 ). Sixty bovine incisors were randomized into one of six groups (n = 10 incisors per group) defined by the interventions carried out after endodontic treatment. In the control group, no additional intervention was carried out, while all teeth in the five intervention groups were bleached with 40% H2 O2 and subsequently treated with alpha-tocopherol at concentrations of 15% (15AT), 20% (20AT), or 25% (25AT), with 10% sodium ascorbate (10SA), or with nothing (40HP). Fracture strength was evaluated in a mechanical testing machine, hybrid layer formation was assessed using scanning electron microscopy, and bond strength was determined using microtensile bond-strength testing. Data were analyzed using Kruskal-Wallis and Dunn's tests. No statistically significant difference regarding fracture strength was observed among groups. Hybrid layer formation was greater in the 15AT group than in groups 40HP and 10SA. Teeth in groups 15AT, 20AT, and 25AT demonstrated higher bond strength than teeth in groups 40HP and 10SA. Alpha-tocopherol, preferably at 15%, effectively reverses the deleterious effects, of bleaching, on hybrid layer formation and bond strength to dentin.


Assuntos
Colagem Dentária , Clareamento Dental , Dente não Vital , Bovinos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , alfa-Tocoferol/farmacologia , Resistência à Flexão , Resinas Compostas/química , Ácido Hipocloroso
15.
Braz Dent J ; 34(4): 62-71, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909643

RESUMO

This study aimed to evaluate the effect of antioxidant solutions on fracture strength and bonding performance in non-vital and bleached (38% hydrogen peroxide) teeth. One hundred and eighty dentin specimens were obtained, 60 for each test: fracture strength, hybrid layer thickness, and bond strength. The groups (n=10) were randomly composed according to post-bleaching protocol: REST - restoration, without bleaching; BL - bleaching + restoration; SA - bleaching, 10% sodium ascorbate solution, and restoration; AT - bleaching, 10% α-tocopherol solution, and restoration; CRAN - bleaching, 5% cranberry solution, and restoration; CAP - bleaching, 0.0025% capsaicin solution, and restoration. Data were analyzed with ANOVA, Kruskal-Wallis, Dunn, and Qui-Square tests (α=0.05). The highest fracture strength values were observed in REST (1508.96 ±148.15 N), without significant difference for the bleached groups (p>0.05), regardless of the antioxidant use. The hybrid layer thickness in the group that was not subjected to bleaching (REST) was significantly higher than in any other group. The bond strength in the bleached and antioxidants-treated groups (SA, AT, CRAN, CAP) has no differences with the bleached group without antioxidants (BL). Adhesive failures were predominant in the groups that did not receive the antioxidant application. In conclusion, the evaluated antioxidants did not show an effect on the fracture strength, hybrid layer thickness, or bond strength of dentin bleached after endodontic treatment. The application of 10% sodium ascorbate, 10% alpha-tocopherol, 5% cranberry, or 0.0025% capsaicin solutions is not an effective step and should not be considered for the restorative protocols after non-vital bleaching.


Assuntos
Colagem Dentária , Clareamento Dental , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/farmacologia , alfa-Tocoferol/análise , alfa-Tocoferol/farmacologia , Capsaicina/análise , Capsaicina/farmacologia , Dentina/química , Ácido Ascórbico/análise , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Clareamento Dental/métodos
16.
Stem Cell Res Ther ; 14(1): 326, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37953287

RESUMO

BACKGROUND: In regenerative medicine, especially skin tissue engineering, the focus is on enhancing the quality of wound healing. Also, several constructs with different regeneration potentials have been used for skin tissue engineering. In this study, the regenerative properties of chitosan-alginate composite hydrogels in skin wound healing under normoxic and hypoxic conditions were investigated in vitro. METHODS: The ionic gelation method was used to prepare chitosan/alginate (CA) hydrogel containing CA microparticles and bioactive agents [ascorbic acid (AA) and α-tocopherol (TP)]. After preparing composite hydrogels loaded with AA and TP, the physicochemical properties such as porosity, pore size, swelling, weight loss, wettability, drug release, and functional groups were analyzed. Also, the hemo-biocompatibility of composite hydrogels was evaluated by a hemolysis test. Then, the rat bone marrow mesenchymal stem cells (rMSCs) were seeded onto the hydrogels after characterization by flow cytometry. The survival rate was analyzed using MTT assay test. The hydrogels were also investigated by DAPI and H&E staining to monitor cell proliferation and viability. To induce hypoxia, the cells were exposed to CoCl2. To evaluate the regenerative potential of rMSCs cultured on CA/AA/TP hydrogels under hypoxic conditions, the expression of the main genes involved in the healing of skin wounds, including HIF-1α, VEGF-A, and TGF-ß1, was investigated by real-time PCR. RESULTS: The results demonstrated that the prepared composite hydrogels were highly porous, with interconnected pores that ranged in sizes from 20 to 188 µm. The evaluation of weight loss showed that the prepared hydrogels have the ability to biodegrade according to the goals of wound healing. The reduction percentage of CA/AA/TP mass in 21 days was reported as 21.09 ± 0.52%. Also, based on wettability and hemolysis tests of the CA/AA/TP, hydrophilicity (θ = 55.6° and 53.7°) and hemocompatibility with a hemolysis ratio of 1.36 ± 0.19 were evident for them. Besides, MTT assay, DAPI, and H&E staining also showed that the prepared hydrogels provide a suitable substrate for cell growth and proliferation. Finally, based on real-time PCR, increased expression levels of VEGF and TGF-ß1 were observed in rMSCs in hypoxic conditions cultured on the prepared hydrogels. CONCLUSIONS: In conclusion, this study provides evidence that 3D CA/AA/TP composite hydrogels seeded by rMSCs in hypoxic conditions have great potential to improve wound healing.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Quitosana/farmacologia , Quitosana/química , alfa-Tocoferol/farmacologia , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia , Alginatos/farmacologia , Hemólise , Cicatrização , Hipóxia , Redução de Peso
17.
Assay Drug Dev Technol ; 21(8): 345-356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38010987

RESUMO

Present research work reports the development of doxorubicin (DOX) loaded α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes. The developed formulation was evaluated for its anticancer potential and intracellular uptake against the MDA-MB-231 breast cancer cell line. Moreover, hemocompatibility studies were also done on human blood red blood cells for the determination of blood compatibility. The prepared doxorubicin-loaded TPGS liposomes (DOX-LIPO-TPGS) and doxorubicin-loaded cationic liposomes (DOX-LIPO+-TPGS) reveal vesicle size (177.5 ± 2.5 and 201.7 ± 2.3 nm), polydispersity index (0.189 ± 0.01 and 0.218 ± 0.02), zeta potential (-36.9 ± 0.7 and 42 ± 0.9 mv), and % entrapment efficiency (65.88% ± 3.7% and 74.5% ± 3.9%). Furthermore, in vitro, drug release kinetics of the drug alone and drug from formulation shows sustained release behavior of developed formulation with 99.98% in 12 h and 80.98% release of the drug in 72 h, respectively. In addition, cytotoxicity studies and cellular DOX uptake on the MDA-MB-231 breast cancer cell line depict higher cytotoxic and drug uptake potential with better hemocompatibility of DOX-LIPO+-TPGS with respect to DOX. The data from the study revealed that TPGS plays an important role in enhancing the formulation's quality attributes like stability, drug release, cytotoxicity, and hemocompatibility behavior. This may serve that TPGS-coated cationic liposome as a vital candidate for the treatment of cancer and drug delivery in case of breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Lipossomos , alfa-Tocoferol/farmacologia , alfa-Tocoferol/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Doxorrubicina/farmacologia , Succinatos/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral
18.
Ther Deliv ; 14(12): 745-761, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38018431

RESUMO

Aim: Gefitinib-loaded D-α-tocopherol polyethylene glycol 1000 succinate (TPGS)-coated cationic liposomes (GEF-TPGS-LIPO+) were developed and optimized by the quality by design (QbD) approach for its potential anticancer effect. Methods/materials: Box-Behnken design (BBD) a systematic design of experiments was added to screen and optimize the formulation variables. Results: GEF-TPGS-LIPO+ shows vesicle size (210 ± 4.82 nm), polydispersity index (0.271 ± 0.002), zeta potential (22.2 ± 0.84 mV) and entrapment efficiency (82.3 ± 1.95). MTT result shows the enhanced cytotoxicity and higher intracellular drug uptake with highest and lowest levels of the reactive oxygen species and NF-κB expressions on A549 lung cancer cells, determined by fluorescence-activated cell sorting flow cytometry. Conclusion: Potential anticancer effect on A549 cells might be found due to cationic liposomal interaction with cancer cells.


Assuntos
Lipossomos , alfa-Tocoferol , alfa-Tocoferol/farmacologia , Gefitinibe , Linhagem Celular Tumoral , Polietilenoglicóis , Vitamina E , Succinatos , Tamanho da Partícula
19.
J Cell Biochem ; 124(11): 1705-1719, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37796145

RESUMO

Bone marrow-derived mesenchymal stem cells (BM-MSCs) are considered a novel regenerative therapy that holds much potential. This study aimed to examine and compare the ameliorative effects of BM-MSCs compared to α-tocopherol (α-Toc) on apoptosis, autophagy, and ß-cell function in a rat model of streptozotocin (STZ)-induced diabetes and further analyzed the implications and interrelations of the entero-insular axis, and type I phosphoinositide 3-kinase (PI3K)/Akt signaling. Forty adult male albino rats were categorized into four groups (n = 10, in each): control group, STZ-induced diabetic group (single i.p. injection of STZ 45 mg/kg), diabetic and treated with BM-MSCs injection, diabetic and treatment with α-Toc p.o. The serum glucose, insulin, nitric oxide (NO), and catalase (CAT) were measured. Histopathological examination of the pancreas, the expression levels of insulin, CD44, caspase-3, autophagy markers, P13K/Akt, and pancreas/duodenum homeobox protein 1, in pancreatic tissue, and glucose-dependent insulinotropic polypeptide (GIP) in the duodenum were detected by hematoxylin and eosin staining, immunofluorescence labeling, and by quantitative real-time polymerase chain reaction. The diabetic rats showed reduced insulin, hyperglycemia, nitrosative stress (NO, CAT), augmented apoptosis (caspase 3), impaired autophagy (p62/SQSTM1, LC3), downregulated PI3K/Akt pathway and increased GIP expression, and degeneration of pancreatic islets. Treatment with either BM-MSCs or α-Toc suppressed the nitrosative stress, reduced apoptosis, recovered autophagy, upregulated PI3K/Akt pathway, and subsequently increased insulin levels, decreased blood glucose, and downregulated GIP expression with partial restoration of pancreatic islets. Based on our findings, the cytoprotective effects of BM-MSCs and α-Toc in type 1-induced diabetes appeared to be related to repaired autophagy and recovered PI3K/Akt signaling. Moreover, we reported their novel effects on reversing intestinal GIP expression level. The effect of BM-MSCs was notably superior to that of α-Toc.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Mesenquimais , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estreptozocina/farmacologia , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Transdução de Sinais , Apoptose , Insulina/metabolismo , Autofagia , Glucose/metabolismo , Células-Tronco Mesenquimais/metabolismo
20.
Int J Pharm ; 646: 123498, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37820942

RESUMO

The most prevalent kind of hair loss is androgenic alopecia (AGA), which is characterized by hair follicle miniaturization and microenvironment dysfunction. Although topical Minoxidil (MXD) was considered to be a safe and effective treatment for AGA, excess reactive oxygen species (ROS) and lower sulfotransferase activity in the hair follicular microenvironment led to an unsatisfactory treatment of AGA. Here, we developed the ethosome (MTE) load of minoxidil and tocopherol acetate to improve the therapeutic effect of MXD on androgenic alopecia. It could regulate the microenvironment around hair follicles, promote the telogen-to-anagen transition of hair follicles, and boost hair regeneration, thus achieving a synergistic effect of 1 + 1 > 2. The results proved that MTE showed excellent stability, biosafety, and good dermal and follicular permeability in vitro. The hair regeneration ability of AGA model mice showed that the co-delivery ethosome might regulate the microenvironment around the hair follicles and improve hair regeneration in comparison to the commercial minoxidil tincture alone. As a result, the strategy provided a promising new strategy for the treatment of AGA.


Assuntos
Minoxidil , alfa-Tocoferol , Camundongos , Animais , Minoxidil/farmacologia , Minoxidil/uso terapêutico , alfa-Tocoferol/farmacologia , Alopecia/tratamento farmacológico , Cabelo , Resultado do Tratamento , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...